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The only solutions to date which describe nonlinear resonant acoustic oscillations are 
those for which the distortion of the travelling waves is negligible. Many experiments 
do not comply with this small-rate restriction. A finite-rate theory of resonance for an 
inviscid gas, in which the intrinsic nonlinearity of the waves is taken into account, 
necessitates the construction of periodic solutions of a nonlinear functional equation. 
This is achieved by introducing the notion of a critical point of the functional equation, 
which corresponds physically to a resonating wavelet. In  a finite-rate theory a wave 
may break in a single cycle in the tube, and thus there may be more than one shock 
present even a t  fundamental resonance. Discontinuous solutions of the functional 
equation are constructed which satisfy the weak shock conditions. 

1. Introduction 
This paper discusses small-amplitude resonant, and near-resonant, oscillations of 

an inviscid gas in a closed tube when the propagating waves are intrinsically non- 
linear. Then there is distortion of the wave as it moves along the tube. We refer to 
such oscillations, which can be produced by increasing either the driver frequency or 
the amplitude, as finite-rate oscillations. All extant theories of resonance in a closed 
tube, with the exceptions of Mortell(l971) and Seymour & Mortell(1973)) have made 
a small-rate assumption. A consequence of this is that all wave distortion is assumed 
negligible. Seymour & Mortell(l973) showed that, in the finite-rate limit, the problem 
of calculating the propagating signal is reduced to finding periodic solutions of a, 
functional equation. Continuous periodic solutions were found in Mortell & Seymour 
(1979). Here a new technique for constructing discontinuous solutions of the functional 
equation is introduced. Because of the evolutionary nature of the functional equation, 
these discontinuities satisfy the weak shock conditions. 

The acceleration rate in any experiment is characterized (see Mortell & Seymour 
1979) by the similarity parameter A = 277(y+ 1)ew2, where B is the ratio of piston 
amplitude to tube length, w is the (dimensionless) piston frequency and y is the gas 
constant (1.4 for air). We conclude here that when A < 0.08 an experiment is in the 
small-rate range, while A > 0.08 defines the finite-rate range. Seymour & Mortell(l973) 
explicitly pointed out the occurrence of the small-rate assumption in the derivation of 
theories up to that time, and the consequent restrictions on the experimental 
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parameters. Recently, Chester has criticized the comparison of experiments in which 
intrinsic nonlinearity is present with a theory which is not intrinsically nonlinear, see 
Brocher (1977). 

Most experiments reported to date have been in the small rate range. The earliest 
significant experiments, those of Lettau (1939), had an amplitude E = 0.0028, and 
were in both the small- and finite-rate ranges as frequencies up to the fourth mode 
were used with 0.01 < A < 0.17. The experiment reported by Saenger & Hudson 
(1960) was a t  the fundamental resonance with E = 0.0019. Their conclusion that, to 
first order, the periodic shock waves have constant strength within the tube and travel 
uniformly in either direction is consistent with their small rate value of A = 0.0075. 
Gulyayev & Kusnetsov (1963) note that in their experiment the instantaneous 
pressure rise within the shock changes along the duct - a finite rate effect. They have 
E = 0.01 1 which gives A = 0.04 at fundamental resonance. The experiment of Galiev, 
Ilgamov & Sadykov (1970), for which E = 0.0163 and A = 0.081 near the fundamental 
frequency, were just in the finite-rate range, as were those of Sturtevant (1974) with 
E = 0-0147. In  neither case can we say if shock strengths vary along the tube, since 
measurements are reported from a single location. Sturtevant (private communica- 
tion) has also conducted experiments with CO, for which B = 0.0268 ( A  = 0.096) and 
with Freon 1 1  for which E = 0.0457 ( A  = 0.160), both in the finite-rate range. In  the 
latter case our theory predicts that the response curve does not close on the right (see 
figure 1 here and Mortell & Seymour 1979). This was not tested in the experiments. 
Finally, the experiments of Zaripov & Ilgamov (1976) covered the whole finite-rate 
range with frequencies up to the third mode for E = 0.023 and 0.04 < A < 0.93. Their 
figure 4 would seem to indicate a difference in shock strength a t  different locations in the 
tube. They also note that, for amplitudes of 0-4 bar and higher, changes of waveform 
take place. However, their results should be interpreted with some care, since the 
amplitude E = 0.023 was achieved with a cone reducer and is only an effective 
amplitude. 

On the theoretical side, Betchov (1958), noting Lettau’s (1939) small rate experi- 
ments, postulated the form of the solution and showed that, for an inviscid gas, the 
amplitude a t  resonance is finite and determined by nonlinear effects. In a little-quoted 
paper, Gorkov (1963) gives a method of solution (not unlike that of Chester 1964) in 
which shocks arise naturally in a frequency band about resonance. Interestingly, he 
avoided quantitative comparison of his theoretical results with the experiments of 
Gulyayev & Kusnetsov (1963) on the grounds that their amplitudes are large enough 
to warrant higher approximations in his theory! 

One of the most influential papers on the subject of resonant acoustic oscillations is 
that of Chester (1964). He gives a deductive argument in which the transition from a 
continuous acoustic oscillation to one involving shock waves arises naturally. The 
basis of Chester’s theory is that the disturbance in the body of the gas is an acoustic 
oscillation, so that the particle velocity E(x, t )  has the representation 

’ 

%x, t )  = ~ , f ~ ~ - ~ x / ~ o ~ - - o f ~ ~ + ~ / ~ , 1 ,  (1 .1)  

where a, is the sound speed in a suitable reference state. The implication of ( 1 . 1 )  is 
that waves in the tube propagate without distortion. Then the refinement of acoustic 
theory given by Chester is simply to ensure that the boundary condition a t  the piston 
is properly satisfied in order to determine the propagating signalfin (1 .1) .  
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The finite-rate theory, which here is used to analyse discontinuous oscillations in 
the linear resonance region, has previously been used to construct continuous, non- 
linear, periodic oscillations (Mortell & Seymour 1979). This theory, which includes 
the effects of nonlinear distortion, is additionally valid a t  m y  frequency, and hence 
gives a certain unity which previously had been lacking. 

2. Formulation 
A pipe, one end of which is closed while a t  the other there is an oscillating piston, 

contains a column of gas of length L in some reference state. The pressure and density 
are measured from (and non-dimensionalized with respect to) the reference state 
(p,, p,) with the associated sound speed a,. Then, in terms of the variables a, u, poa,2p, 
pop, Lx and LaGl t ,  the governing equations in Lagrangian form are 

au ap a aU 

at ax at ax ) 

- + - = - [ ( l + e ) - l ] - - - =  0 

where e( = p - 1) is the condensation, y p  the excess pressure ratio and u the particle 
velocity. In terms of these variables, the equation of state for the isentropic flow of 
an ideal gas is 

p = ~ - l [ (  1 + e ) Y  - I] = e + ( M  - I )  e 2 +  O(e3),  

where M = icy+ 1 )  and y is the ratio of specific heats. 
The end x = 0 is closed, so that u(0, t )  = 0, while a t  x = 1 there is a periodic piston 

displacement of the form e@wt).  Here e ( <  1 )  is the ratio of the maximum piston 
displacement to the column length, L, and has unit period in wt, so that 

E(y+ 1)  = E(y) .  

Thus w-l is the non-dimensional period of the piston. In terms of the particle velocity, 
the boundary condition at  the piston is 

u( 1, t )  = h(wt), . (2.3) 

where h(wt) = e&'(wt), and hence h has zero mean over a period. For periodic gas 
motions, the means of u and p are also zero. 

Seymour & Mortell (1973) and Mortell & Seymour (1979) have shown that, for 
small piston speeds EO but for any frequency w ,  the motion of the gas can be described 
in terms of solutions of the functional equation 

where f has unit period and zero mean value. The pressure and particle velocity are 
given at  any position in the tube, in terms off, to first order, by 

P = -f(P) -s(a), u = f(P) -s(a), (2.5) 

and a = w(t-x)-wMxg(a),  P = o ( t + x - l ) + w M ( x -  l)f(B), (2.6) 

where g is related to f by 
g ( $ + w + o M f ( + ) )  =f($,. 
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When equation (2 .4)  is linearized, by setting M = 0, i t  has no bounded periodic 
solution for w = w, = in, n = 1 , 2 , 3 ,  . . ., the linear resonant frequencies. Defining, for 
any n, 

F = ZoMf + A, H = 2wMh and A = ~ ( w - u , ) ,  ( 2 . 8 )  

equations (2 .4)  become 

where F has unit period and must satisfy the mean condition 

F(7)  = F ( s )  + H ( T ) ,  7 = 8 + W ) ,  

(2.10) 

The basic functional equation (2.9) can be regarded as the product of two mappings: 

where 

and 

where 

(2.12) 

TI can be regarded as a ‘simple-wave mapping’. The function P(7)  represents the 
distorted signal returning to the piston after reflexion from x = 0, but before it has 
been reinforced by the piston motion. T2 then represents the action of the piston on 
E(7) .  A given function, defined over a unit interval, is a solution of equations (2.9) 
if it maps onto itself under the product T2T1. To be an acceptable physical solution 
i t  must also satisfy the periodicity condition and the mean condition (2.10)) in which 
A is a measure of the detuning from a linear resonant frequency. 

Before attempting to construct solutions of equations (2 .9))  it is instructive to 
consider the small-rate limit, defined by 

IHI = 2Meo2IE’I < 1, (2.13) 

when the functional equation (2.9) can be approximated by the ordinary differential 

(2.14) 
equation 

The small-rate limit (2.13), in addition to limiting the modes for which equation 
(2 .14)  applies for a given amplitude e,  also limits the range of frequencies about each 
linear resonant frequency to I A1 < 1. These restrictions are noted explicitly by Seymour 
& Mortell (1973). All other theories of resonant oscillations have implicitly made the 
small rate assumption. 

437) FA(7) = H ( 7 ) .  

For the sinusoidal piston motion usually used in experiments 

H ( 7 )  = A sin (Znv), (2.15) 

where the similarity parameter A = 4nMeo2. The integral curves of equations (2.14) 
and (2.15) in the (7, F )  plane have the well-known form of the nonlinear pendulum: 

G(7) = & [Fi(O) + 2An-1 sin2 (n7)]4. (2.16) 

All solutions are even about 7 = + with FA(+) = 0. The saddle points a t  (0,O) and 
(1, 0) are connected by the separatrices 

z*(q) = & (ZA/n)tsin (nr]), (2.17) 
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which enclose the centre a t  ( 8 , O ) .  For 

(2.18) 

the solution curves given by equation (2.16) are continuous and periodic, while for 
[ A [  < Ae(A) there are no continuous periodic solutions. For frequencies such that 
A < Ae(A) a discontinuous periodic solution is constructed using z*(r): 

(2.19) 

The shock location a t  r,~ = ys is determined by the mean condit,ion (2.10) and yields 

cos ( ~ 7 ~ )  = - A/Ae. (2.20) 

Thus qs+ 1 (0) as A +  Ae ( - AJ. The small-rate solution (2.16) usually referred to as 
' Chester's solution ', was found independently by Gorkov (1963) and Chester (1964). 

Continuous periodic solutions of the functional equation (2.9) are given in Mortell 
& Seymour (1979). There it is shown that the A-A plane is divided by a transition 
curve into regions where continuous periodic solutions exist and where they do not, 
the results being reproduced here in figure 1. It should be noted that for H given by 
equation (2.15) the transition curve is an even function of A about A = 0 and A = 8.  
Hence all solutions can be represented in the strip 0 < A 6 a, A 2 0. The first branch 
of the transition curve A = A,(A), 0 < A < 0.12, passing through A = A = 0, defines 
the boundary of the linear resonant band, containing each linear resonant frequency 
w,. The parabolic nature of A,(A) in the small-rate limit, A < 1 ,  is confirmed by the 
formula (2.18) for Ae(A). The region 0 < A < A,(A) of figure 1 is the linear resonance 
region, and coincides with A = A,(A) for 0 < A < 0.08. For piston motions with A and 
A in the linear resonance region, the propagating signal leaving x = 1 always contains 
a t  least one wavelet carrying an amplitude which completes a cycle in the tube in an 
integer multiple of the period of H .  This definition of the linear resonance region will 
be made more precise in $4.  I n  this paper, we construct the periodic motions in the 
linear resonance region. 

3. Construction of multivalued invariant curves 
The algorithm given in Mortell & Seymour (1979) for constructing continuous 

periodic solutions of equations (2.9) fails to yield solutions in the linear resonance 
region and a new approach is needed. Functional equations of the form (2.9) have 
received scant attention in the literature. Kuczma (1  968) refers to their solutions as 
invariant curves, and gives various local properties. Some insight into the global 
properties of their solutions was obtained by Mortell & Seymour (1976), where two 
classes of exact solutions for piecewise linear functions, H ( r ) ,  were found. The key 
to  constructing these exact solutions, which is further exploited here, is in recognizing 
that the role of the fixed points of the invariant curves is analogous to that of the 
critical points of the corresponding small-rate differential equation (2.14). Thus the 
local structure of the invariant curves can be classified in the neighbourhood of the 
fixed points. Two invariant curves emanating from each saddle point are found for 
0 < 9 < 1.  When [HI < 1 their structureis similar to the separatrices (2.17) of equation 
(2.14). However, as \HI increases, the invariant curves become multivalued. 
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FIGURE 1. Transition curve in A-A plane bounding region of continuous periodic solutions 
(shaded), and the edge of the linear resonance region, 0 < A < A,(A),  considered in this paper. 

It is convenient to distinguish between the invariant curves of equation (2.9)) which 
we denote by Z(y), and the physical solution, F(?)), which must be single-valued and 
also satisfy the mean condition (2.10). A fixed point (or critical point) of an equation 
of the form (2.9) is a point (7,) 2,) defined by 

7 = s = 7, when Z(7) = Z(s) = 2,. (3.1) 

(3.2) 

and are thus located a t  the zeros of the forcing function. Any physical solution con- 
taining a critical point must include a resonating wavelet in the propagating signal 
with the value 2 = 0, corresponding, by definition (2.8),  to 

For equation (2.9) they are the points where 

2, = H ( % )  = 0, 

f = - A / ( 2 M w ) .  (3.3) 

Then there is a t  least one point in the signal leaving x = 1 which completes one cycle 
in the tube in an integer multiple of the piston period. The frequency range about the 
linear resonant frequencies for which there is a resonating wavelet is the linear 
resonance region. 

I n  order to classify the critical points and thereby study the local structure of 
solutions, we linearize the functional equation (2.9) about a critical point, for arbitrary 
IHI, to yield the autonomous differential equation 
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where y = 7 -qC and p = H’(vC) .  Then, for p > 0 the critical point is a saddle point, 
and for p < 0 it is either a stable spiral or a node. The possible slopes of the invariant 
curves through a saddle point (yS, 0) are calculated by differentiating the functional 
equation (2.9) and setting q = s = qs, yielding 

A* = Hp k (p2+ 4p)*I, (3.5) 
where A* = Z’(vS). Since H(7,) = 0 and H has zero mean there is a t  least one saddle 
point in each period. 

By taking the second derivative, with respect to s, of the first of equations (2.9) 
and eliminating dr /ds  we obtain 

Z ( s )  = [ 1 + Z’(S)]3 [Z”(y) - H”(q)], (3.6) 
which yields, on setting 7 = s = T ~ ,  

(1 + A 9 3  

z”(7s) = [ (1 + ,4+)3 - 1 (3.7) 

Similarly, as many derivatives of Z at a saddle point may be calculated as there are 
derivatives of H there. Hence the Taylor approximation to an invariant curve can be 
computed to any accuracy in the neighbourhood of a saddle point. This then overcomes 
the inherent difficulty of equations of the form (2.9), viz., that the solution must be 
known over a non-zero interval before it can be extended. 

Two solutions emanate from any saddle point in the direction of increasing 7, one 
with positive and one with negative slope. Without loss of generality we take yS = 0. 
If Z,+(s) is a known positive solution of equations (2.9) for 0 = T~ < s < sl, then 
equations (2.9) imply that 7 > s and that 2,+(7) is known for 0 < 7 6 yl, where 
rl = s1 + Z,+(sl) > sl. By repeating this procedure the solution can be further extended 
to the interval 0 6 7 6 T ~ ,  where q2 = vl + Z$(q 1) > yl. Hence, by repeated use of the 
mapping (2.9), any non-zero segment of solution curve containing the saddle point at 
7 = 0 may be extended to the interval 0 < 7 < 1. (This holds only if Z$(s) 2 0 for 
0 < 7 = s + Z$(s) 6 1, which can easily be verified.) The initial segment containing the 
saddle point is constructed by the Taylor series. We note that the subsequent mappings 
are exact. The only error introduced is in truncating the Taylor series. 

The negative solution from qs = 0, in the direction of increasing 7, 2;(7), can be 
calculated either from a mapping scheme similar to that used to find Z,+(y) (though 
now 0 < 7 6 s), or by noting that, through equations (2.9), 

Z;(7) = H ( 7 )  -Z$(7). (3.8) 

Two further solutions, emanating from yS = 1 in the direction of decreasing 7, can 
similarly be constructed on [0,1] by extending the Taylor approximations to the two 
solutions near vS = I .  We denote these by Z i ( q ) ,  with Z:(r) > 0 near 7 = 1. If the 
piston motion has the symmetry H ( 7 )  = - H (  1 - q), it is easy to  show that, when Z(7) 
is tt solution, -Z(1 -7)  is also. Hence, using equation (3.8),  Z?(q) can also be written 
in terms of Z,+(q) as follows: 

and Z,(7) = -Z,f(l--q).  (3.10) 

For definiteness we consider the piston motion given by equation (2.15). The 
structure of the four solution curves Z:, 2: depends strongly on the magnitude of t’he 
similarity parameter A .  In the small rate range, 0 < A < A,, the curves Z$ and Z,+ 

Zt(7) = H(r)+Z, f (1 -7 )  (3.9) 
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- 

FIGURE 2. Finite-rate solution curves Z,+(y )  for H ( 7 )  = Asin (2n7) 
when A = 0.1 ~ 0.2 and 0.5. 

(and also 2; and 2,) are indistinguishable, i.e. there are two invariant curves con- 
necting the saddle points 7 = 0 , l .  These are direct analogues of the separatrices 
x*(r) for the differential equation (2.14). From numerical investigations we find that 
A, is approximately 0.01, though we have no proof of the existence of A, > 0. How- 
ever, it is not until A > 0.08 that Z,+ and 2: are distinguishable on a scale of physical 
interest; hence we take A ,  = 0.08, corresponding to e = 0.014 for the first mode and 
E = 0.005 for the second mode. 

When A, < A < A,, where A, is approximately 0-8, we say A is in the finite-rate 
range. In this range the curve Z,+(r) (and hence by (3.9) and (3.10), 25 and 2,) is 
multivalued on [O, I]; Z(7) becomes multivalued whenever lZ’(7)l +a, which, by 
equations (2.9), occurs whenever I + Z’(s) + 0. Then the ‘breaking time’ of some part 
of the propagating signal is less than its travel time in the tube. The finite-rate theory 
is presented here to cope with this distortion, which is clearly outside the scope of any 
small-rate (differential equation) theory. Multivalued solutions 2$(7)  are illustrated 
in figure 2 for A = 0.1,0.2 and 0.5. For A = 0.1 the multivalued loops are quite small, 
but become larger as A increases. 

In  the finite range, Z,+(v) and Zt(7) are distinct and intersect an infinite number of 
times on [0, I]. This is illustrated in figure 3 for A = 0.3, where the multivalued loops 
of Z$(7) on [a, I] are intersected by Z,+(r). By equations (2.9) and (3.9),  Z+(q) and 
Z$(r)  intersect a t  7 = yo and y1 where 

Y 1 =  il and Yo = Y1-Z,+(YA 
since Z$(yo) = Z,+-(yl). There is a further point of intersection at  7 = ro, yo < ro < y,. 
Then 

Z,’(ri) = Z,+(ri), ri+l = ri+Z,+(ri)  

and Z,+(yyi) = V(%), yi+1 = yi + Z,+(Yi), -a < i < a, 
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I 
FIGURE 3. Finita-rate solution curves Z,'(v) and 2,' (7) for A = 0.3 showing 

points of intersection given by equations (3.13) and (3.14). 

define two sequences of points of intersection. These are the only points common to 
Z,+(y) and Z,+(y). The limit points of these points of intersection are the saddle points 
a t  y = 0 and q = 1 .  A class of exact solutions in which this property is explicitly 
demonstrated is given in Mortell & Seymour (1976). Note that the algorithm for 
generating solutions is not affected by the rnultivaluedness since it is a purely algebraic 
process, independent of Z'(y), in the multivalued region. 

4. Construction of periodic solutions 
In  the finite-rate range, the invariant curves must be made single-valued before 

constructing the periodic solution to  (2.9) and (2.10). The observation that multi- 
valued solutions correspond to breaking waves indicates that single-valued solutions 
should be obtained by inserting shocks using an equal-area rule. This choice of dis- 
continuities is consistent with the mappings T1 and T2, which are both area preserving, 
and the weak shock conditions. A composite of the two discontinuous ' separatrices ' 
on [ O ,  I] joined by a further shock is chosen to satisfy the mean condition (2.10). 
It is then demonstrated that, on using the equal-area rule, this final discontinuous 
function is a solution of the functional equation (2.9).  The direction of the jumps is 
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FIGURE 4. Discontinuities are inserted in multivalued loops to 
preserve area. The line ale' is mapped onto ae. 

inherent in the functional equation, which includes the cumulative distortion over a 
cycle, and hence no appeal to an entropy condition is necessary. 

4.1. Discontinuous invariant curves 

I n  Q 3 it  was shown that, for A > A,, the curve Z$(T) has an infinite number of multi- 
valued loops on [i, 13, each of which is intersected by the curve Z,f(q). By equations 
(2.91, IZ'(q)j+oo as y+yT whenever l+Z'(s)+O as s+s:, where 7: = s;l+Z(sT). 
The multivalued loop on [$, 71:] of Z,f(q), illustrated in figure 4 for A = 0-5, is the 
image ofZ,+(q) on [s:, sg]. A discontinuityis inserted at 7 = xl, 72 < x1 < 7:. The points 
marked a and e are the images of a' and e' a t  s- and S+ under the mapping (2.9). Thus, 
by equations (2.9), 

equivalent to two of the weak shock conditions. The equal-area rule (see Whitham 
1974) is the third shock condition and can be written in terms of Z as 

x1 = s- + Z,+(s-) = s+ + Z$(S+), (4.1) 

Z(7) d y  - +{Z(S+) + Z(S-)} (sf - S-) = 0. (4.2) I:-+ 
Equations (2.9) and (4.1) then imply that the area enclosed by the loop abcde is 

S+ 

Iabc&Z2(?1)dTI =Is- Z,+(sjds+&(Z~2(s+)-Zof2(s-)) = 0, (4.3) 

by equations (4.1) and (4.2). Thus each multivalued loop in 2,. is made single-valued 
by inserting a discontinuity whirh cuts off lobes of equal area. It can additionally 
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FIGURE 5. Z J ( 7 )  and Z(7)  for 0 < 7 < 1 when A = 0.2.2(7) is the image of Z,'(7) under 
the simple wave mapping (4.5) which takes the ith shock onto the ( i  + 1)st. 

be shown that the areas bounded by Z$ and Z: between successive points of inter- 
section are all equal. Hence there is a discontinuity in Z,+ in each interval [ r i , r i + J ,  
i 2 j, when Z,+ first becomes multivalued in the j th  interval. This, in the finite-rate 
range, Z,+ contains an infinite number of shocks on [+, 13 whose strengths tend mono- 
tonically to zero and their locations tend to 7 = 1 as <-+a. This is illustrated in 
figure 5 for A = 0.2, which also exhibits the function Z(7) = Z,+(s(r)). &(y) is the 
distortion of Z,+(q) under the simple wave mapping T1. Under this mapping the ith 
shock maps onto the (i + 1)st shock, on using the equal-area rule. Thus &(v) and Z,+(r) 
have shocks of identical strengths at  the same locations. Since, by T2,  

&(7) = Z,+(r) - H(7L 

the discontinuous function ZO+(7;1) maps onto itself under equations (2.9) and the equal- 
area rule, and hence may be considered a discontinuous invariant curve. 

In  a similar manner, we construct discontinuous functions from the multivalued 
solutions Z; and 2;. However, it is easily seen that, of these three functions, only 
that derived from Z ,  is a discont,inuous solution of (2.9) and (4.2). Any discontinuity 
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introduced in 22 or 2, is compressional and is maintained, while a discontinuity in 
2, or Z,+ produces a straight-line segment, corresponding to  an expansion fan, under 
the mapping T1. The direction of the jumps in Z,+ and 2, is consistent with that 
demanded by the entropy condition (Whitham 1974). 

We have thus constructed two single-valued separatrices, Z$ and 2,) on [0,1] in 
both the small- and finite-rate ranges. They are illustrated in figures 6 and 7 for A = 0.05 
and A = 0.3. In  the small-rate range the separatrices are the Iimiting curves of the 
continuous periodic curves, which do not contain fixed points of equations (2.9)) that 
were constructed in Mortell & Seymour (1979). Several of these continuous curves are 
included in figure 6, which also includes the separatrices associated with the quadratic 
resonance a t  A = 4. The analysis for these latter curves is given in Mortell & Seymour 
(1980). Further analysis shows that there are also separatrices about A = 5, 4, i .  so 
that the continuous curves do not fill the whole region between the separatrices 
associated with A = 0 and A = +. In both the small- and finite-rate ranges, the 
separatrices Z,+ and 2,- correspond to the piston frequencies 

(4.4) 

= ~t +&(A), 
on using equations (2.8) and (2.10). If the applied frequency is such that 

1A1 < A , ( A )  (4.5) 

there is no continuous solution of (2.9) which satisfies the mean condition (2.10). 
When (A1 > A,(A) there is no longer an amplitude of the signal leaving x = 1 which 
completes a cycle in the tube in a multiple of the period of H .  Hence A = A,(A) defines 
the edge of the linear resonance region and is equivalent to statement (3.3). It is 
illustrated in figure 1, which indicates that in the small-rate range 

M A )  = AAA) = A t @ )  

coinciding with the transition curve separating the regions in the A-A plane corres- 
ponding to continuous and discontinuous periodic solutions of equations (2.9) and 
(2.10). In the finite-rate range the edge of the linear resonance region does not corres- 
pond to the transition curve. 

The area/:Z,+(a)dg, defining the boundary of the linear resonance region, can be 

calculated, even in the finite-rate range, using only continuous portions of Z$(a). On 
noting equations (3.9), (4.3) and (4.4) 

The curve A = A,(A), calculated in this way, is plotted in figure 1.  

4.2. Solution in the linear resonance region 

In $$3  and 4.1 single-valued solution curves of equations (2.9) have been constructed 
which join the saddle points a t  = 0 and 7 = 1 .  When the applied frequency, w ,  is 
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PICURE 6. Small-rate 2-7 plane for A = 0.05. Solid curves are all solutions of 
equation (2.9) each corresponding to a different driving frequency. 

in the range )2(w-w,)) = ]A1 < A,(A) there is no single invariant curve, Z(q), of 
equations (2.9) which satisfies the mean condition (2.10). Consequently, as in Q 2 for 
the ordinary differential equation (2.12), we define the discontinuous function 

The location of the discontinuity, .,(A), is chosen to satisfy the mean condition 
(2.10); for example, 

xs(0) = 6 ,  xs(AJ = 1 and -Al) = 0. 

This additional discontinuity must also satisfy the weak shock conditions. By the 
construction of Z,t and Z,, equations (2.9) imply that for any 0 < x, < 1 there exist 
numbers s- and s+, where 0 < s- < xs < s+ < 1, such that 

Hence, since 7 varies continuously on [0 ,  I], from equations (2.9) 

,F(x,)+ - J’(z,)- = ,F(s+) - F(s-) = - (S+ - S-), (4.8) 
where F(xs)+ = lim F ( q )  = Zc(x8) .  Integrating the first of equations (2.9) with respect 

Blr. 
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FIGURE 7. The two single-valued but discontinuous ' separatrices ' 
on [0,1]2,+(7) and 2;(7) for A = 0.3. 

to 7 on [ O ,  11, using equation (4.8) and the fact that H has zero mean value, again 
yields the equal-area rule (4.2) with 2 replaced by F.  Thus the discontinuity a t  x, 
introduced by the mean condition is consistent with the weak shock conditions. 

It remains to show that the composite function F(7)  defined by equation (4.6) is a 
solution of the functional equation (2.9). We define a second composite function 

which is the distortion of F(7)  by the simple wave mapping T1. Then 

(4.10) 

as required by equations (2.9), only if y = x,. Hence the position and strength of the 
shock at  y = x, are preserved under the full mapping (2.9), since H is continuous. 
Thus the composite function F(7)  defined by equation (4.6) is a discontinuous invariant 
curve. Note that the direction of the jump form 2; to 2; results from the evolutionary 
nature of equations (2.9). A composite function with a jump from 2, to 2; does not 
satisfy equations (2.9). 

The function p(7)  represents the distorted signal returning to the piston after 
reflexion from x = 0 ,  but before it has been reinforced by the piston motion. Both 
F ( 7 )  and P ( 7 )  are illustrated in figure 8 for the finite-rate case A = 0.50. 

Even in the small-rate range, with only a single shock a t  x,, the distortion is 
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FIQURE 8. Ffa) and its distortio? F(7)  in the finite-rate case of A = 0-5 at a frequency when F 
contains two shocks per period. F has shocks at the same locations with the same strengths as F .  

appreciable, There is considerable distortion for A = 0.5. During each cycle the two 
shocks which leave the piston coalesce before they return as the second shock, while 
a new shock is formed from the maximum values of F(y ) .  This always occurs in the 
finite-rate range a t  frequencies for which F($) contains more than one shock. It is 
important to  note that the shock strengths and their locations, relative to the zeros 
of F ,  change as the signal traverses the tube. Only when the signal returns to the 
piston after a full cycle do the shock strengths and positions return to their original 
values. For example, if F ( y )  contains two shocks on leaving the piston, there will in 
general be other locations in the tube where the corresponding f(P) contains either one 
or three shocks. 

5.  Physical solutions 
I n  this section we compare the finite-rate and small-rate invariants, F and Fd, in 

the linear resonance region and calcuIate the corresponding pressure variations on 
the piston. Only the functional equation (2.9) includes the effect of the continuous 
distortion of the signal as it moves in the tube. This results in discontinuous solutions 
in the linear resonance region which may contain any number of shocks, depending 
on the applied amplitude and frequency. The pressure variation calculated from Fd 
always contains only one shock per period. 

We first contrast various properties of Z,+(y) and z+(y), from which F and Fd 
are constructed. The separatrix z+(y) is symmetrical about 7 = + for all A .  Its maxi- 
mum occurs at y L  = 4 and is given by zf = ( 2 A r 1 ) $ .  The finite-rate seprtratrix 
Z,+(y) is not symmetric and its maximum, Z&, occurs a t  yATf, where 4 - Z,+(+) < yL$f < Q. 
When A < 1,  Z& 2: z;fi; while, for A $ 1,  Z& - A + 4. A good indicator of the difference 
in shapeof Z,+(y) and z+(y) is the position of the maximum, yAw, which decreases rapidly 
from 0.5 at A = 0 to 0.3 a t  A = 0.4. As A increases further, yAlr approaches 0-25. The 
corresponding linear invariant 
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FIGURE 9. Pressure on the piston with A = 0.3 for w = 1.128 in the second mode, corresponding 
to E = 0.0156. - , present theory; - - - - - -, Chester's solution; -.-, linear theory. 

is, of course, unbounded as A + 0. The linear maximum, 

zl(A) = A + A(2 sin (rA))-l ,  

depends on both A and A. The maximum occurs at  rr(A) = &( 1 - A).  
The discrepancies between finite-rate, small-rate and linear theories are further 

illustrated by considering the variation in pressure on the piston. In calculating the 
invariants, using (2.9), (2.16) or (5.1), only A and A are specified, the solutions then 
being valid for any mode at the appropriate B. When calculating the pressure the mode 
must also be specified, since the pressure on the piston is, by (2.5)-(2.8), 

P(7) = (wM)-l [A + &A sin (27~7) - F(v)] .  

e(7) = (2wM)-l A cot (nA) cos (27~7). 

(5.2) 

.(5.3) 

The small-rate pressure, Pd(7), is also given by (5.2) with F replaced by Fd while the 
linear equivalent is 

For \A1 < A,(A), Pd(7) contains a single discontinuity in each period, while the number 
of discontinuities in P(7) increases as A+Az(A)  for A large enough. However their 
strengths tend to zero as A + A,, and any form of damping could erase the smaller 
ones. P, Pd and 8 are compared in figure 9 for a typical amplitude of physical interest, 
B = 0-0156, with the frequency w = 1.128 (A = 0-256) in the second mode. These values 
give A = 0.3, in the finite-rate range, Pd(7) contains a single shock of strength 0.126 
at 7 = 0.93, while P(7) contains two shocks of strengths 0.218 at q1 = 0-82 and 0.176 at 
qz = 0.92. The small-rate theory concludes that a single shock of constant strength 0.126 
travels in the tube. Since the finite-rate theory includes the intrinsic nonlinear distortion 
it predicts that the shock a t  rl will coalesce with that at q2 as the signal traverses the 
tube. A t  the same time, a new shock, formed by the distortion of that part of the signal 
with slope F' = - 1 (near 7 = 0.4), evolves to take up its position at  7, after one cycle. 

Typical variations of pressure on the piston for several frequencies in the range 
0.872 < w < 1.143 of the second mode are illustrated in figure 10 when e = 0.024. For 
this amplitude and range of frequencies, A varies from 0.275 to 0.473. The corres- 
ponding response curve, indicating maximum and minimum pressures and shock 
strengths a t  the piston, is given in figure 11.  
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FIGURE 10. Pressure on the piston for several frequencies in the range 0.872 < w <  1.143 when 
E = 0.024. They correspond to A = 0.255, -0.125, 0.05,0.175 and 0.285 with 0.275 < A d 0,473. 

--- 

FIGURE 11. Response curve for E = 0.024, 0.872 < w < 1.143 in the second mode, so that 
A = 2(w - 1). Curves indicate maximum pressure PM, minimum pressure P,;,, pressure a t  top 
and bottom of shocks, and B,,,, and linear maximum and minimum pressure P,.  
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Continuous solutions of the functional equation (2.9) are constructed in Mortell & 
Seymour (1979) for values of A and A inside the transition curve of figure 1, while 
here we have found the discontinuous solutions in the linear resonance region. These 
discontinuous solutions satisfy the weak shock conditions because of the evolutionary 
nature of equation (2.9). However, the critical point technique introduced in 9 3 will 
yield a solution only in that region of the A-A plane for which there is ail amplitude 
of the propagating signal which completes a cycle in the tube in an integer multiple 
of the period. Outside the linear resonance region, for example when A is in the neigh- 
bourhood of 0.5, the formulation of the problem must be modified before an extension 
of the concept of a critical point yields the solution. This analysis applied to the 
problem of nonlinear resonance is the subject of our next paper. 
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and one of the referees for his constructive comments. This work was supported in 
part by the Natural Sciences and Engineering Research Council of Canada under Grant 
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